The value of a new car is £18000. The value of the car decreases by 25% in the first year, and 12% in each of the next 4 years. Work out the value of the car after 5 years.

In the 1st year the car loses 25% of its value, meaning it retains 75% of its value. The starting value (100%) was £18000, so multiplying this by the 75% retained - remembering to change this to decimal notation, gives the new value. 18000 * 0.75 = 13500.
In the next 4 years the car loses 12% of its value each year, meaning it retains 88% of the value from the previous year. The starting value before these 4 years is £13500, remembering it has already lost 25% of the original value by this point. For each year this needs to be multiplied by the 88% retained - as there are 4 years it loses this value it will be multiplied by 88% 4 times.13500 * 0.88 * 0.88 * 0.88 * 0.88 This can be simplified to 13500 * (0.88)4 = £8095.89 Notice how when the value decreases the same amount in consecutive time periods (years), the equation to solve the question takes the form Starting value * (Value retained)Number of times This holds true when the value is increasing too.

AM
Answered by Alexander Murdoch Bell W. Maths tutor

9459 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you find the length of the longest side of a right-angled triangle?


How do I do the dot product with vectors?


Work Out (2+11/15 )-(1+1/3)


AQA, foundation 2016: Lee does a sponsored silence for 2.25 hrs. He is sponsored 80p per minute. How much does he raise?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning