How do I use the chain rule for differentiation?

Let’s say we’re given the equation y=(2x-6)^4we would know how to differentiate x^4, therefore we can take the substitution u=2x-6 to give us the equation y=u^4we then differentiate this equation (dy/du) to get 4u^3
However, we need dy/dx , and so we take the fact that dy/dx = (dy/du) x (du/dx)u=2x-6, therefore du/dx = 2And so dy/dx = 2 x 4u^3 = 8u^3

NA
Answered by Natasha A. Maths tutor

3244 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate 3x^56


Find the solution of the differential equation: dy/dx = (xy^2 + x)/y. There is no need to rearrange the solution to be in terms of y.


Sketch the graph of x^2+y^2-6x-4y=23


Express 6cos(2x)+sin(x) in terms of sin(x). Hence solve the equation 6cos(2x) + sin(x) = 0, for 0° <= x <= 360°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences