How do you integrate ?

In order to integrate an algebraic term, such as 8x3 + 4, one must first take the power of the first term and increase this by 1, getting 8x4. Secondly, divide the coefficient on x by the new power, in this case 8/4. Resulting in the first term being 2x4. Then, do the same to the second term. Here, the number 4 is technically 4x0, but of course, x0=1. Hence, 4x1=4. So again, 4x0 becomes 4x1. Then divide 4 by 1, which gives 4. therefore the second term is 4x1. Thus, the integral of 8x3 +4 is 4x4 + 4x + C. C being a constant that can be derived when limits are placed on the integral. Here is the formula for integration: Integral of un = un+1 /(n+1) + C ,

LH
Answered by Louie H. Maths tutor

3678 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Express asin(x) + bcos(x) in the form Rsin(x+c), where c is a non-zero constant.


Given that Sin(A) = 1/sqrt(3), show that Tan(A) = 1/sqrt(2)


Given y = 2x^2 + 3x + 2 find dy/dx


Via the product rule, or otherwise, differentiate 'y = xsin(x)'.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning