x = 0.436363636... (recurring). Prove algebraically that x can be written as 24/55.

We need to multiply x by powers of 10 in order to get the recurring part on its own after the decimal point, and then be able to eliminate it. 10x = 4.363636... and 1000x = 436.363636...So subtracting we get 1000x - 10x = 436.363636... - 4.363636...so 990x = 432.Then dividing both sides by 990, we get x = 432/990.We now just need to simplify this fraction: x = 432/990 = 216/495 = 72/165 = 24/55.So we have x = 24/55.


JP
Answered by Joanna P. Maths tutor

25724 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation 4x + 2 = -5x + 20


Write down the coordinates of the turning point of the graph y = x^2 – 8x + 25


The value of a new car is £18000. The value of the car decreases by 25% in the first year, and 12% in each of the next 4 years. Work out the value of the car after 5 years.


Solve the quadratic equation x^2 + 3x + 2 = 0, by factorisation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences