Let n be an integer greater than 1. Prove that n^2 - 2 - (n-2)^2 is an even number.

To show a number N is even, we must be able to express it in the form N = 2x for some other whole number x. Let's try to manipulate the given expression to see if we can put it in this form. By expanding the squared bracket and gathering like terms (be careful of the minus sign in front of the bracket!), we see that:
n2 - 2 - (n-2)2 = n2 - 2 -n2 +4n - 4 = 4n - 6
Now then, our new aim is to find x such that 4n - 6 = 2x. By dividing both sides of this equation by 2, we see that x = 2n-3. Since 2n - 3 will always be a whole number, we have shown that n2 - 2 - (n-2)2 = 2(2n-3), and so we are done as we have put the expression in the desired form.

SL
Answered by Sam L. Maths tutor

17222 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The equation of a curve is y = ax^2 + 3x + c where a and b are integers. The curve has a minimum point at (1,1), find a and c


How do you simplify (3x-3)/(x-1)?


A class of pupils were asked about how they travelled to school on a particular day. 1/6 of the pupils were driven to school in a car. 2/5 of the pupils took the bus. The rest of the pupils walked to school. Calculate the fraction of pupils who walk


Solve the following inequality: x^2 + x -12<0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences