An ordinary, fair sided dice is rolled 480 times. How many times is the number 3 expected?

An ordinary dice has six sides. We have an equal chance to roll on any of these six sides. This gives us the probability of rolling a 3 (or any other number) as 1/6.Each roll is independent i.e the result of one roll does not influence the result of any other roll.So to get the number of times we expect to get a 3, we multiply the number of times we roll the dice with the probability of us getting a 3:480*1/6 = 80

LP
Answered by Louis P. Maths tutor

5844 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The point P has coordinates (4, 5). The point Q has coordinates (a, b). A line perpendicular to PQ is given by the equation 5x+3y=11. Find an expression for b in terms of a.


Solve ((3x+2)/(x-1)) +3 =4


Factorise and solve for the solutions of X in the equation X^2 + 8X +15?


Expand and simplify the following equation: 3(2a+2) + 4(b+4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences