An ordinary, fair sided dice is rolled 480 times. How many times is the number 3 expected?

An ordinary dice has six sides. We have an equal chance to roll on any of these six sides. This gives us the probability of rolling a 3 (or any other number) as 1/6.Each roll is independent i.e the result of one roll does not influence the result of any other roll.So to get the number of times we expect to get a 3, we multiply the number of times we roll the dice with the probability of us getting a 3:480*1/6 = 80

LP
Answered by Louis P. Maths tutor

5751 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation (6/x-2)-(6/x+1) =1


How can you factorise quadratics with a an x^2 coefficient higher than one?


In the isosceles triangle ABC, AB=AC and angle B=(3x +32)degrees and angle C=(87-2X)degrees


given that f(x) = x^4 + 2x, find f'(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences