two balls of similar size masses m and 2m are moving at speeds u and 2u along a frictionless plane, they collide head on and are reflected, assuming that the coefficient of restitution of this collision is 1, what the speeds are afterwards in u

ball A has mass m and velocity u. ball B has mass 2 m and velocity 2uby conservation of momentum:mu - 4mu = mv + 2mx (1)where v is the velocity of ball A and x is the velocity of ball B after collision.by conservation of energy:1/2mu^2 + 4mu^2 = 1/2mv^2 + mx^2 (2)equation (1) can be rearranged to become:v= -3u + 2x (3)substituting (3) into (2) 1/2mu^2 +4mu^2 = 1/2m(-3u + 2x)^2 +mx^2 (4)simplifying and grouping terms in (4) and moving to one side to make a quadratic gives:0=5x^2 - 12ux, this means that x must be either 0 or -2usubstituting these results into our term for momentum (1)v is either -3u or u, evidently the answer must be that x is 0 and v is -3u

WA
Answered by William A. Maths tutor

3019 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.


Integral of sin^x dx


How exactly does integration by parts work?


A curve has equation y = 2x^5 + 5x^4 1 . (a) Find: (i) dy/ dx [2 marks] (ii) d^2y/ dx^2 (b) The point on the curve where x ¼ 1 is P. (i) Determine whether y is increasing or decreasing at P, giving a reason for your answer.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences