Calculate the derivative of x^x

This problem is best solved using implicit differentiation and by tackling each side of the equation individually. First write down the problem as "y = x^x". Recalling that log rules can be used to simplify exponents we take the natural log of both sides and simplify to leave "ln(y) = xln(x)". The next step is to write the derivative term with respect to x on each side to leave "d(ln(y))/dx = d(xln(x))/dx". Applying the product rule to the RHS gives "d(ln(y))/dx = ln(x)dx/dx + xd(ln(x))/dx" this easily simplifies to "d(ln(y))/dx = ln(x) + x*(1/x)" or "d(ln(y))/dx = ln(x) + 1". Multiplying the LHS by dy/dy (equal to 1) gives "d(ln(y))/dy * dy/dx = ln(x)+1" which goes to "1/y * dy/dx = ln(x) + 1". Multiplying across the y gives "dy/dx = y(ln(x) + 1)". Now we can recall that y = x^x to complete the problem. leaving "dy/dx = x^x(ln(x) + 1)".

GH
Answered by George H. Maths tutor

3885 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


Differentiate 3x^2 + 4x - 7


Use logarithms to solve 9^x=15


A girl kicks a ball at a horizontal speed of 15ms^1 off of a ledge 20m above the ground. What is the horizontal displacement of the ball when it hits the ground?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning