Calculate the derivative of x^x

This problem is best solved using implicit differentiation and by tackling each side of the equation individually. First write down the problem as "y = x^x". Recalling that log rules can be used to simplify exponents we take the natural log of both sides and simplify to leave "ln(y) = xln(x)". The next step is to write the derivative term with respect to x on each side to leave "d(ln(y))/dx = d(xln(x))/dx". Applying the product rule to the RHS gives "d(ln(y))/dx = ln(x)dx/dx + xd(ln(x))/dx" this easily simplifies to "d(ln(y))/dx = ln(x) + x*(1/x)" or "d(ln(y))/dx = ln(x) + 1". Multiplying the LHS by dy/dy (equal to 1) gives "d(ln(y))/dy * dy/dx = ln(x)+1" which goes to "1/y * dy/dx = ln(x) + 1". Multiplying across the y gives "dy/dx = y(ln(x) + 1)". Now we can recall that y = x^x to complete the problem. leaving "dy/dx = x^x(ln(x) + 1)".

GH
Answered by George H. Maths tutor

3884 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Tom drink drives two days a week, the chance of him being caught per day is 1 in 100. What is the chance he will not be driving after a) one week? b) one year?


How can I remember when a turning point of a function is a maximum or a minimum?


Show that the equation 5sin(x) = 1 + 2 [cos(x)]^2 can be written in the form 2[sin(x)]^2 + 5 sin(x)-3=0


If a curve has equation y = (-8/3)x^3 - 2x^2 + 4x + 18, find the two x coordinates of the stationary points of this curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning