Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)

Step 1 - Identify the difference between the required form of the answer and the expression to be simplified: 

It can be seen that in order to simplify the expression we need to somehow get rid of the denominator.

Step 2 - Attempt a method to get rid of the denominator: 

The best way to get rid of the denominator is to multiply it by (sqrt(5)+1). In order to keep the expression the same we must do the same to the numerator as well. 

This gives us,

((7+sqrt(5))/(sqrt(5)-1))*((sqrt(5)+1)/(sqrt(5)+1))

Step 3 - Carry out the necessary calculations:

The top parts of the fractions multiply together and the bottom parts of the fractions multiply together.

For the top part this gives us,

(7+sqrt(5))(sqrt(5)+1) = 7sqrt(5)+7+5+sqrt(5)

= 8*sqrt(5)+12

For the bottom part this gives us,

(sqrt(5)-1)*(sqrt(5)+1) = 5+sqrt(5)-sqrt(5)-1 = 4

Dividing the top part by the bottom part gives us,

2*sqrt(5)+3

Step 4 - Check that the answer is in the correct form.

The question asks for an answer in the form,

a+b*sqrt(5)

Our answer can be written in this format with a = 3 and b = 2.

IR
Answered by Ian R. Maths tutor

21007 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

how to turn a fraction in the form of (x + a)/(x + b)^2 into partial fractions?


What is the derivative of f(x)=sqrt(3x+2)=(3x+2)^(1/2)?


A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.


A trolley of negilible mass on horizontal tracks is at rest. A person of mass 50kg is standing on the trolley with a bag of mass 10kg. The person throws the bag off the trolley horizontally with a velocity of 3m/s. Calculate the velocity of the man.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning