Simplify (7+sqrt(5))/(sqrt(5)-1), leaving the answer in the form a+b*sqrt(5)

Step 1 - Identify the difference between the required form of the answer and the expression to be simplified: 

It can be seen that in order to simplify the expression we need to somehow get rid of the denominator.

Step 2 - Attempt a method to get rid of the denominator: 

The best way to get rid of the denominator is to multiply it by (sqrt(5)+1). In order to keep the expression the same we must do the same to the numerator as well. 

This gives us,

((7+sqrt(5))/(sqrt(5)-1))*((sqrt(5)+1)/(sqrt(5)+1))

Step 3 - Carry out the necessary calculations:

The top parts of the fractions multiply together and the bottom parts of the fractions multiply together.

For the top part this gives us,

(7+sqrt(5))(sqrt(5)+1) = 7sqrt(5)+7+5+sqrt(5)

= 8*sqrt(5)+12

For the bottom part this gives us,

(sqrt(5)-1)*(sqrt(5)+1) = 5+sqrt(5)-sqrt(5)-1 = 4

Dividing the top part by the bottom part gives us,

2*sqrt(5)+3

Step 4 - Check that the answer is in the correct form.

The question asks for an answer in the form,

a+b*sqrt(5)

Our answer can be written in this format with a = 3 and b = 2.

IR
Answered by Ian R. Maths tutor

20588 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


|2x+1|=3|x-2|


Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


p(x)=2x^3 + 7x^2 + 2x - 3. (a) Use the factor theorem to prove that x + 3 is a factor of p(x). (b) Simplify the expression (2x^3 + 7x^2 + 2x - 3)/(4x^2-1), x!= +- 0.5


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning