Solve the simultaneous equation: 2x + y = 18 and x−y=6

Check to see if the number in front (coefficient) of either the x's or y's is the same. In this case both the y's have the same coefficient so we do not need to make them the same.We are going to add the parts in the questions as the equations in front of y's are different (one is positive and the other is negative)2x + x = 3x and y +- y = 0 (as a + and - = -) and 18+6 = 24. Bringing it all together 3x = 24. Dividing by 3 gives x = 8.We now substitute 8 in for x in one of the equations. So 8-y=6. giving y to = 2 and x to 8.

CK
Answered by Chelsea K. Maths tutor

4395 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A right-angle triangle has three sides (diagram would be included). Side A = 3cm; Side B = 7cm. What is the length of Side C (the hypotenuse)? Give your answer to 2 d.p.


A box contains 7 caramel doughnuts. They have masses of 56 g, 67 g, 45 g, 56 g, 58 g, 49 g and 50 g. Find the median, mean and mode values of these masses. Bonus: What mass of doughnut could be added to the box to make the mean mass = 61 g.


N=2a+b, where a is a two-digit square number and b is a two-digit cube number. What is the smallest possible value of N?


Simplify completely: 3x^2 - 14x +5 /2x^2 -10x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning