Show, by first principles, that the differential of x^2 is 2x.

First I would draw a Diagram of y=x2 on the x and y plane, for x>0. Then label a generic point as (x,y), then noting that as y=x2 we can then equate the sane point to (x, x2). Then I would note that another point, further away from the initial point can be labelled as (x+h, (x+h)2 ).
I would remind the student that the process of finding a derivative is to find a function for the gradient tangent at any point. I would show the student that using the generic equation for the gradient, we know as y2-y1/x2-x1. We know two points on this curve, so would tell them to plug these into the equation (as this will give us an estimate for the gradient). Then, I would show graphically that as h gets smaller and smaller, the line gets closer and closer to being a tangent at this point. This introduces the concept of the limit as h approaches zero. I would show them how to plug into the equation and show what happens as h approaches zero for the function, showing that it eventually gives us dy/dx=2x (showing the notation of the different kinds of changes). Then I would ask if there are any questions and then give them a slightly different example.

KJ
Answered by Kieren J. Maths tutor

3112 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the function f(x,y)=x^3 + y^3 -3xy at the point (2,1), given that f(2,1) = 6.


If y=3x^3e^x; find dy/dx?


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


Use implicit differentiation to find dy/dx of: 2(x^2)y + 2x + 4y - cos((pi)y) = 17


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning