Determine the coordinates of all the stationary points of the function f(x) = (1/3)*x^3+x^2-3*x+1 and state whether they are a maximum or a minimum.

To find the answer you must first differentiate the function and set this equal to zero. This forms the quadratic equation x^2+2x-3=0 which can then be solved either by factorisation or by using the quadratic formula. This enables you to find the x-coordinates of the two stationary points which can then be substituted back into the original equation to find the y-coordinates of the stationary points. The coordinates of the stationary points are (1, -2/3) and (-3, -8).To find the nature of the stationary points you must find the second differential of the original function which is f”(x)=2x+2. Then you substitute the x-coordinates into this function and if f”(x)<0 the point is a maximum, if f”(x)>0 then the point is a minimum. Therefore, we can determine that (-3, -8) is a maximum and (1, -2/3) is a minimum.

AN
Answered by Alex N. Maths tutor

3788 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using the limit definition of the derivative, find the derivative of f(x)=sin(3x) at x=2π


Given that 5cos^2(x) - cos(x) = sin^2(x), find the possible values of cos(x) using a suitable quadratic equation.


Show how '2sin(x)+sec(x+ π/6)=0' can be expressed as √3sin(x)cos(x)+cos^2(x)=0.


The curve C has the equation (x^2)+4xy-8(y^2)+27=0. Find dy/dx in terms of x and y.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning