if a^x= b^y = (ab)^(xy) prove that x+y =1

ln(a^x) = ln(b^y) = ln((ab)^(xy))
xln(a) = xyln(ab)
ln(a) = yln(ab) = y(ln(a) + ln(b))
y = ln(a)/(ln(a)+ln(b))
with same analysis for ln(b^y):
ln(b) = x(ln(a) + ln(b))x = ln(b)/(ln(a)+ln(b))
x + y = (ln(a) + ln(b))/(ln(a) + ln(b)) = 1

SC
Answered by Scott C. Maths tutor

5809 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you integrate xcos(x)?


Mechanics 1: How do you calculate the magnitude of impulse exerted on a particle during a collision of two particles, given their masses and velocities.


Find the integral of: sin^4(x)*cos(x)dx


f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning