Using the principle of the conservation of energy, calculate the maximum speed of a ball of 5.0kg that has been dropped from a height of 20m. (Given that the gravitational field strength is equal to 9.8N/kg)

Answer: 20ms-1The gravitational potential energy before the ball is dropped is equal to mgh. This gives the ball a maximum gravitational potential energy of 5.0kg * 9.8N/kg 20m which is equal to 980 J. At the maximum ball speed, the kinetic energy of the ball will be equal to 980J- this will be the point at which the ball is at an altitude of zero. As kinetic energy is given as 1/2 mv2, the velocity can be found by dividing the 980 J by one half (multiplying by two) and dividing by the mass (5kg) and then taking the square root of the resulting number. This velocity, v, will be equal to √9802/5 . This is equal to 20 ms-1

CH
Answered by Charlie H. Physics tutor

3552 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

What's the difference between longitudinal and transverse waves?


I never know where to start where I get a calculation question given many values, what should I do? (e.g: finding how much energy is needed for all the ice in a glass of water to melt after the ice is dropped into warm water)


Explain, in terms of pressure, how straws draw water into your mouth.


What is the power dissipated by a 12 Ohm resistor when 2A of current run through it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning