Using the principle of the conservation of energy, calculate the maximum speed of a ball of 5.0kg that has been dropped from a height of 20m. (Given that the gravitational field strength is equal to 9.8N/kg)

Answer: 20ms-1The gravitational potential energy before the ball is dropped is equal to mgh. This gives the ball a maximum gravitational potential energy of 5.0kg * 9.8N/kg 20m which is equal to 980 J. At the maximum ball speed, the kinetic energy of the ball will be equal to 980J- this will be the point at which the ball is at an altitude of zero. As kinetic energy is given as 1/2 mv2, the velocity can be found by dividing the 980 J by one half (multiplying by two) and dividing by the mass (5kg) and then taking the square root of the resulting number. This velocity, v, will be equal to √9802/5 . This is equal to 20 ms-1

CH
Answered by Charlie H. Physics tutor

3118 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

A kettle requires 2400 Coulombs of charge to pass through its heating element, with a resistance of 6 Ohms, in a time of 200 seconds in order to boil the water inside it. Calculate the current flowing and the power of the kettle.


A student of mass m=50kg runs an experiment. He throws a ball of mass m = 400g from a height h = 20m. What will be the speed of the ball he records just before it touches the ground?


What energy transfers are involved in you being able to move?


Explain the difference between a battery and a cell


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences