Using the principle of the conservation of energy, calculate the maximum speed of a ball of 5.0kg that has been dropped from a height of 20m. (Given that the gravitational field strength is equal to 9.8N/kg)

Answer: 20ms-1The gravitational potential energy before the ball is dropped is equal to mgh. This gives the ball a maximum gravitational potential energy of 5.0kg * 9.8N/kg 20m which is equal to 980 J. At the maximum ball speed, the kinetic energy of the ball will be equal to 980J- this will be the point at which the ball is at an altitude of zero. As kinetic energy is given as 1/2 mv2, the velocity can be found by dividing the 980 J by one half (multiplying by two) and dividing by the mass (5kg) and then taking the square root of the resulting number. This velocity, v, will be equal to √9802/5 . This is equal to 20 ms-1

CH
Answered by Charlie H. Physics tutor

3154 Views

See similar Physics GCSE tutors

Related Physics GCSE answers

All answers ▸

Describe the difference between reflection and refraction (assume the mediums have smooth surfaces)


An apple is suspended a string and a spring in parallel. When the string is cut, the apple falls, and the spring stretches and contracts repeatedly as the apple bounces. Describe the energy conversions that occur during this process.


Which type of electromagnetic radiation has the longest wavelength?


A 6.0W bulb is connected to a source of 480J of energy. Assuming the system is 100% efficient, and the bulb runs at full power, how long can it stay lit?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences