MYTUTOR SUBJECT ANSWERS

737 views

Where does the quadratic equation come from?

This is a quick derivation of the quadratic formula for an GCSE Maths students looking to stretch themselves a little and go for that A*!

If we have a general quadratic equation:

ax2+bx+c=0   (eq1)

You will have been told that the solution is:

x= (-b +/- sqrt[b^2-4ac])/2a   (eq 2)

But why is this true? Let's go through this in steps. Firstly, we will divide our equation by a:

x2+(b/a)x+(c/a) =0   (eq 3)

Now we can use a clever trick called 'completing the square', which states that:

x2+(something)x = (x+(something)/2)2 - (something/2)2   (eq 4)

You can check this by multiplying out the brackets on the right hand side!

Anyway, this clever trick tells us that:

x2+(b/a)x+(c/a) = (x+(b/2a))2 - (b/2a)2 + (c/a) = 0   (eq 5)

Let's tidy up by moving the contants over to the right hand side:

(x+(b/2a))2 = (b/2a)2 - (c/a)   (eq 6)

Now we take the sqaure root of both sides:

(x+(b/2a)) = +/- sqrt[(b/2a)2 - (c/a)]   (eq 7)

The reason for the +/- is that there are always two answers to the sqrt (for example, (2)= 4, but so does (-2)2, so sqrt[4] = +/- 2 ). Let's look at the square root on the right hand side and tidy it up a bit:

sqrt[(b/2a)2 - c] = sqrt[b2/4a2 - c] = sqrt[(b2 - 4ac)/4a2]   (eq 8)

Where in the last step I took out a factor of 1/4a2. We can now use that sqrt[AB] = sqrt[A]sqrt[B] to write:

sqrt[(b2 - 4ac)/4a2] = sqrt[1/4a2]sqrt[(b2 - 4ac)]   (eq 9)

But 1/4a2 is just (1/2a)2, so sqrt[1/4a2] = 1/2a !

So we have:

sqrt[1/4a2]sqrt[(b2 - 4ac)] = (1/2a)sqrt[(b2 - 4ac)]   (eq 10)

Phew, we're nearly there now! Using this into equation (7) we have:

(x+(b/2a)) = +/- (1/2a)sqrt[(b2 - 4ac)]   (eq 11)

Let's subtract (b/2a) from both sides to make x the subject:

x = (-b/2a) +/- (1/2a)sqrt[b2 - 4ac]   (eq 12)

And now (last step!) we take out a factor of (1/2a) and we have at last:

x = (-b +/- sqrt[b^2-4ac])/2a   (eq 2)

And we're done!

Ryan M. Mentoring Physics tutor, GCSE Maths tutor, GCSE Science tutor...

2 years ago

Answered by Ryan, a GCSE Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

645 SUBJECT SPECIALISTS

PremiumJames L. A Level Biology tutor, A Level Chemistry tutor, GCSE Biology...
£24 /hr

James L.

Degree: Medical Sciences (Bachelors) - Exeter University

Subjects offered:Maths, Science+ 4 more

Maths
Science
Physics
Chemistry
Biology
-Personal Statements-

“Hi, I'm James, a Masters student studying Biology. I'm really passionate about science, and I hope i can share some of it with you!”

PremiumJacan C. A Level Maths tutor, A Level Physics tutor, GCSE Physics tut...
£36 /hr

Jacan C.

Degree: Theoretical Physics (Masters) - York University

Subjects offered:Maths, Science+ 3 more

Maths
Science
Physics
Further Mathematics
Chemistry

“Helping the striving and the struggling with caring, friendly and structured tuition. With 200+ hours of experience, offering Physics, Maths and Chemistry.”

£24 /hr

Sohini C.

Degree: Medicine,MBBCh (Bachelors) - Cardiff University

Subjects offered:Maths, Science+ 3 more

Maths
Science
Biology
-Personal Statements-
-Medical School Preparation-

“Hi, I'm Sohini. I'm a fourth year medical student at Cardiff uni and keen to help students with Science and Maths GCSE subjects. I can also help with medical school applications, especially personal statements and interviews. ”

About the author

PremiumRyan M. Mentoring Physics tutor, GCSE Maths tutor, GCSE Science tutor...

Ryan M.

Currently unavailable: for new students

Degree: PhD in Astronomy (Doctorate) - Cambridge University

Subjects offered:Maths, Science+ 2 more

Maths
Science
Physics
Further Mathematics

“About Me:I'm a recent Physics graduate of Oxford University (1st Class Honours), currently working on a PhD in Astronomy at Cambridge University. My Astrophysics research is focused on characterising the atmospheres of planets orbit...”

You may also like...

Posts by Ryan

What speed do satellites orbit at?

Where does the quadratic equation come from?

Why is Pluto not a planet any more?

Other GCSE Maths questions

Expand (2x-3)(4x+4) using the FOIL method.

Find Solution to x^2 + x - 2=0

explain and show how quadratic equations are solved

If a and b are the roots of the quadric polynomial 2x^2+6x+7 what are a+b and ab?

View GCSE Maths tutors

We use cookies to improve your site experience. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok