MYTUTOR SUBJECT ANSWERS

462 views

Where does the quadratic equation come from?

This is a quick derivation of the quadratic formula for an GCSE Maths students looking to stretch themselves a little and go for that A*!

If we have a general quadratic equation:

ax2+bx+c=0   (eq1)

You will have been told that the solution is:

x= (-b +/- sqrt[b^2-4ac])/2a   (eq 2)

But why is this true? Let's go through this in steps. Firstly, we will divide our equation by a:

x2+(b/a)x+(c/a) =0   (eq 3)

Now we can use a clever trick called 'completing the square', which states that:

x2+(something)x = (x+(something)/2)2 - (something/2)2   (eq 4)

You can check this by multiplying out the brackets on the right hand side!

Anyway, this clever trick tells us that:

x2+(b/a)x+(c/a) = (x+(b/2a))2 - (b/2a)2 + (c/a) = 0   (eq 5)

Let's tidy up by moving the contants over to the right hand side:

(x+(b/2a))2 = (b/2a)2 - (c/a)   (eq 6)

Now we take the sqaure root of both sides:

(x+(b/2a)) = +/- sqrt[(b/2a)2 - (c/a)]   (eq 7)

The reason for the +/- is that there are always two answers to the sqrt (for example, (2)= 4, but so does (-2)2, so sqrt[4] = +/- 2 ). Let's look at the square root on the right hand side and tidy it up a bit:

sqrt[(b/2a)2 - c] = sqrt[b2/4a2 - c] = sqrt[(b2 - 4ac)/4a2]   (eq 8)

Where in the last step I took out a factor of 1/4a2. We can now use that sqrt[AB] = sqrt[A]sqrt[B] to write:

sqrt[(b2 - 4ac)/4a2] = sqrt[1/4a2]sqrt[(b2 - 4ac)]   (eq 9)

But 1/4a2 is just (1/2a)2, so sqrt[1/4a2] = 1/2a !

So we have:

sqrt[1/4a2]sqrt[(b2 - 4ac)] = (1/2a)sqrt[(b2 - 4ac)]   (eq 10)

Phew, we're nearly there now! Using this into equation (7) we have:

(x+(b/2a)) = +/- (1/2a)sqrt[(b2 - 4ac)]   (eq 11)

Let's subtract (b/2a) from both sides to make x the subject:

x = (-b/2a) +/- (1/2a)sqrt[b2 - 4ac]   (eq 12)

And now (last step!) we take out a factor of (1/2a) and we have at last:

x = (-b +/- sqrt[b^2-4ac])/2a   (eq 2)

And we're done!

Ryan M. Mentoring Physics tutor, GCSE Maths tutor, GCSE Science tutor...

1 year ago

Answered by Ryan, a GCSE Maths tutor with MyTutor


Still stuck? Get one-to-one help from a personally interviewed subject specialist

452 SUBJECT SPECIALISTS

£18 /hr

Liam R.

Degree: Economics (Bachelors) - Durham University

Subjects offered: Maths

Maths

“Hi! I am a first-year student at Durham University studying Economics, and I have a real passion for maths, which I hope I can share with you during our tutorials. I will make all tutorials in-depth, engaging, and most importantly, fu...”

£18 /hr

James S.

Degree: MPhys (Masters) - Edinburgh University

Subjects offered: Maths, Physics+ 2 more

Maths
Physics
Chemistry
Biology

“About me: I am a third-year physics student at the University of Edinburgh. I have always been passionate about the sciences; including biology and chemistry in conjunction with physics. I love having the opportunity to help and meet ...”

MyTutor guarantee

£20 /hr

Oliver W.

Degree: Natural Sciences (Bachelors) - Cambridge University

Subjects offered: Maths, Extended Project Qualification+ 4 more

Maths
Extended Project Qualification
Economics
Chemistry
Biology
-Personal Statements-

“I am third year student at the University of Cambridge studying Natural Sciences. I specialise in Neurobiology. However, I have a lot of experience in othersciences and maths, at GCSE and IB level. I studied for 5 years at Sevenoaks Sc...”

About the author

Ryan M.

Currently unavailable: for new students

Degree: PhD in Astronomy (Doctorate) - Cambridge University

Subjects offered: Maths, Science+ 2 more

Maths
Science
Physics
Further Mathematics

“About Me:I'm a recent Physics graduate of Oxford University (1st Class Honours), currently working on a PhD in Astronomy at Cambridge University. My Astrophysics research is focused on characterising the atmospheres of planets orbit...”

You may also like...

Posts by Ryan

What speed do satellites orbit at?

Where does the quadratic equation come from?

Why is Pluto not a planet any more?

Other GCSE Maths questions

Find the highest common factor of 432 and 522

Sam and Jack share out £80 in the ratio 5:3, in that order. How much do they each get?

How do I know whether to add or minus in Pythagoras's theorem?

Show that AB is not parallel to CD.

View GCSE Maths tutors

Cookies:

We use cookies to improve our service. By continuing to use this website, we'll assume that you're OK with this. Dismiss

mtw:mercury1:status:ok