The curve C has equation y=3x^3-11x+1/2. The point P has coordinates (1, 3) and lies on C . Find the equation of the tangent to C at P.

In order to find the gradient of a tangent to the curve C we must differentiate our equation for C.dy/dx= 9x2-11To find the gradient of a tangent at a specific point P we substitute the coordinates of P into this gradient equation.dy/dx= 9(1)2-11= -2, which tells us that the gradient of the tangent at P is-2.The general equation of a line is (y-yp)=m(x-xp).To find the equation of our tangent to C at P we must substitute the gradient and the coordinates of P into this general equation of a line.y-3= -2(x-1)y-3= -2x +2y+2x= 5, which is our equation of the tangent to C at P.

CW
Answered by Chloe W. Maths tutor

5406 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you intergrate sin^2(x)?


dy/dx= 2x/2 - 1/4x, what is d2y/dx2?


Point P on the curve, x = 2tan( y+ π/12), has a y-coordinate of π/4. Find an equation for the normal to the curve at P.


Given that the increase in the volume of a cube is given by dV/dt = t^3 + 5 (cm^3/s). The volume of the cube is initially at 5 cm^3. Find the volume of the cube at time t = 4.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences