Express x^2-4x+9 in the form (x-p)^2+q where p and q are integers

The first step would be to expand the second equation:(x-p)^2+qx^2-px-px+p^2+q

this simplifies to x^2-2px+p^2+q

After this you examine the two equations and identify their similarities such as the x^2 term and the terms with have a single x in them.

From this you can equate the terms which have similar terms (see below)

-2px=-4x and p^2+q=9

Next determine which equation is solvable.

As -2px=-4x only has one variable is it solvable.

Solving this equations gives:

-2px=-4x

cancelling x

-2p=-4

divide both sides by -2

p=2 (save this)

Next use this solution to solve the second equation:

p^2+q=9

substitute p=2

2^2+q=94+q=9

q=5 (save this)

Finally substitute the values for p and q into the original equation

 (x-p)^2+q

 final answer: (x-2)^2+5

This can be checked by expanding it and ensuring that it does become x^2-4x+9.

MN
Answered by Mark N. Maths tutor

15075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the value of: d/dx(x^2*sin(x))


Find the gradient at x=1 for the curve y=2x*e^2x


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning