Solve algebraically: 1) 6a + b = 16, 2) 5a - 2b = 19

Firstly multiply the first equation by 2 resulting in the equation 12a + 2b = 32. Following this, add the first equation to the second equation, this will result in the 2b cancelling out with just 17a = 51. Divide this equation by 17 to get the result a=3.
You can use this result in your original equation replacing the variable a with your answer so you for example in the second equation instead of 5a - 2b = 19, you would now have 5(3) - 2b = 19. Simplify this equation to get the result 15 - 2b = 19, simplify further to get -2b = 4. Lastly divide both sides by -2 to get the answer b = -2

AS
Answered by Andrew S. Maths tutor

2929 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The line L1 has an equation y=2x-2. What is the equation of the line L2 which is parallel to L1 and passes through the point (0,3)?


(a) show that 3/10 + 2/15 = 13/30 (b) show that 2 5/8 ÷ 1 1/6 = 2 1/4


Factorise and solve x^2 - 8x + 15 = 0


Find the roots of the equation y = 2x^2 + 5x + 2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences