Integrate 4x^3 - 3x + 6

When integrating an equation we can treat each variable individually. Lets start with 4x^3, when integrating, we raise the power (in this case 3) by +1 and divide the multiple (in this case 4) by the new raised power (in this case 3+1=4).
The integral of 4x^3 is therefore: (4/4)x^4 i.e. x^4
We follow the same process to integrate -3x: (-3/2)x^2 i.e. -1.5x^2
And 6: (6/1)x^1 i.e. 6x
We can now add these values up to reach our answer but remember integration is only unique up to a constant. Therefore we add a C to represent a constant. Our final answer is therefore: x^4 - 1.5x^2 + 6x + C

BP
Answered by Bradley P. Maths tutor

4001 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 4exp(6x) + cos(x) + 6x


Solve ln(2x-3) = 1


Differentiate xcos(x) with respect to x.


Relative to a fixed origin O, the point A has position vector (8i+13j-2k), the point B has position vector (10i+14j-4k). A line l passes through points A and B. Find the vector equation of this line.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning