Describe the synaptic transmission of nerve impulses.

The nerve impulse arrives at the pre-synaptic knob. Gated voltage-sensitive calcium ion channels open and calcium ions rapidly diffuse into the pre-synaptic knob. The influx of calcium ions stimulates synaptic vesicles full of the neurotransmitter acetylcholine to fuse with the pre-synaptic membrane. Acetylcholine is released into the synaptic cleft by exocytosis. Acetylcholine diffuses across the synaptic cleft. It bonds with receptor sites associated sodium ion channels, causing them to open. Sodium ions rapidly diffuse in and depolarise the post-synaptic membrane. If there is adequate depolarisation then an action impulse will be initiated in the post-synaptic neurone. Acetylcholine remaining in the synaptic cleft with be rapidly broken down by the enzyme acetylcholinesterase to prevent repeated stimulation of the post-synaptic neurone. The products (choline and ethanoic acid) diffuse back across the synaptic cleft into the pre-synaptic knob. ATP is then required to reform acetylcholine and ‘package’ it in the synaptic vesicles ready for the arrival of the next nerve impulse.

Answered by Megan G. Biology tutor

10410 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Describe the processes and forces that allow water movement up a plant stem.


Explain why the binding of one oxygen molecule to haemoglobin makes it easier for a second molecule of oxygen to bind.


Vaccines have become an effective way to prevent certain diseases, however for some viruses it is difficult to develop a vaccine. Describe possible difficulties of developing a permanent vaccine for the influenza virus.


What happens in the light independent reactions of photosynthesis?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy