Differentiate z = e^(3y^2+5) with respect to y. (Hint: use chain rule.)

We can find dz/dy using chain rule dz/dy=dz/du x du/dy (1) by defining u=3y^2+5 (since the exponent of e is a function of y we call this function u) and rewrite z=e^u. Then, we find dz/du=e^u (2) and du/dy=6y (3). Now we can substitute (2) and (3) into (1) to find dz/dy=e^u 6y =6y e^(3y^2+5), where in the last line we substitute u=3y^2+5. (Ensure that you give your answer in terms of y.)

SH
Answered by Sophie H. Maths tutor

2914 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


Find the equation of the tangent to the curve y = 3x^2(x+2)^6 at the point (-1,3), in the form y = mx+c


Solve the simultaneous equations y + 4x + 1 = 0 and y^2 + 5x^2 + 2x = 0


Differentiate f(x) = (x+3)/(2x-5) using the quotient rule.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning