Find the derivative of the equation y = x*ln(x)

y = x*ln(x)Let u = x, v = ln(x) => du/dx = 1, dv/dx = 1/x=> y = uv=> dy/dx = (du/dx)v + u(dv/dx) USING PRODUCT RULETherefore y = ln(x) + 1

OB
Answered by Owen B. Maths tutor

3951 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for y = x^3*e^x*cos(x)


Find the turning points of the curve y=2x^3 - 3x^2 - 14.


Solve the differential equation: e^(2y) * (dy/dx) + tan(x) = 0, given that y = 0 when x = 0. Give your answer in the form y = f(x).


Find the minimum value of the function, f(x) = x*exp(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences