How do I solve the simultaneous equations 5x+2y=11 and 4x-3y=18?

Simultaneous equations have two or more unknown values, in this case there are two: x and y. To solve them, first we need to get one unknown by itself. In order to do this we need the coefficient of either x or y to be the same number in both equations. If we multiply the first equation by 3 we get: 15x+6y=33. If we multiply the second equation by 2 we get: 8x-6y=36. The coefficient of y is 6 in both equations so now we can eliminate the y values. As we have a positive and a negative value, adding the two equations together will cancel out the y values: 23x=69. If both values were positive, we would need to subtract one equation from the other instead. 23x=69 can be easily solved to give x=3. Then we just replace the x in one of the original equations to find y: 5(3)+2y =11 --> 2y = -4 --> y=-2. You can then check your answers by substituting back into the other equation.

HT
Answered by Helen T. Maths tutor

6663 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equation: 2x + y = 18, x - y = 6


I’ve been taught two methods for solving pairs of simultaneous equations. When should I use which?


Dipen and Nisha are planning a wedding reception. Nisha says, “I want to invite 70 guests.” Dipen says, “If we invite one-fifth fewer guests, we will save more than £500” Is Dipen correct?


When solving two simultaneous equations, when should you use the method of elimination and when would you use the method of substitution?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences