Differentiate y=x^4sinx

  1. Firstly, we must recognise that the function is in the form of a product, y=uv, where u and v are functions of x. Therefore, we can use the product rule, dy/dx = u (dv/dx) + v (du/dx). 2) We can write u = x^4 and differentiating this we obtain du/dx = 4x^3 by multiplying by the power then taking one off the power (the general rule for differentiation being y=ax^n, dy/dx = anx^(n-1). 3) We then take v= sinx and differentiating this we obtain dv/dx = cosx. 4) The product rule then gives, dy/dx = u (dv/dx) + v (du/dx) = x^4cosx + 4x^3sinx. 5) Simplifying this then gives, dy/dx = x^3 (xcosx + 4sinx).
HM
Answered by Holly M. Maths tutor

7075 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


What is the factor theorem?


By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


Express 2 ln(3) + ln(11) as a single natural logarithm


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences