Differentiate y=x^4sinx

  1. Firstly, we must recognise that the function is in the form of a product, y=uv, where u and v are functions of x. Therefore, we can use the product rule, dy/dx = u (dv/dx) + v (du/dx). 2) We can write u = x^4 and differentiating this we obtain du/dx = 4x^3 by multiplying by the power then taking one off the power (the general rule for differentiation being y=ax^n, dy/dx = anx^(n-1). 3) We then take v= sinx and differentiating this we obtain dv/dx = cosx. 4) The product rule then gives, dy/dx = u (dv/dx) + v (du/dx) = x^4cosx + 4x^3sinx. 5) Simplifying this then gives, dy/dx = x^3 (xcosx + 4sinx).
HM
Answered by Holly M. Maths tutor

7391 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a quadratic equation, how do I find the coordinates of the stationary point?


Integrate the following between 0 and 1: (x + 2)^3 dx


What is the exact answer to (1^3 + 2^3 + 3^3)^(0.5) ?


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning