How can I solve simultaneous equations?

We can solve simultaneous equations in two different ways. We can either eliminate one of the unknowns or use substitution. It is about finding which method you are most comfortable with and practicing that method. We will first look at the method of elimination.If I am given the two equations:2x + y = 73x - y = 8 To begin I would add the two equations to get rid of the y. So 2x + y = 7+3x - y = 8would become: 5x = 15(if the equations had two positive y's we would then subtract the equations to get rid of the y.)With the 5x = 15 we can get what value x would have by dividing 15 by 5.Then x = 3.Since we know that x = 3 all we have to do is put 3 back into one of the original equations to find out what y is. so 2x + y = 7 would become (2x3) + y =7 which is 6+y= 7y=7-6 so y=1.The answers are then x=3 and y=1. We will now look at the method of substitution.If we are given the equations of:y - 2x = 12y -3x = 5We can rearrange y - 2x =1 to become y=1+2xWe can then substitute y into the other equation so 2(1+2x) - 3x = 52 + 4x -3x = 52 + x = 5x= 5-2x=3 Now that we know what x is we can substitute it into one of equations to find out what y isso y-2x=1y- (2x3) =1y-6=1y= 1+6y=7So the answer is x=3 and y=7SImultaneous equations can look difficult but after some practice and finding out what method you prefer you will be able to solve them!

MM
Answered by Meabh M. Maths tutor

5544 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the following simultaneous equations. x^2+y^2=25. y-3x=13


We have two straight lines AB and CD. The coordinates of A,B and C are A(1,3), B(5,9) and C(0,8). The point D lies on the line AB and is halfway between points A and B. Is the line CD perpendicular to AB?


How to find the longest side of a right-angled triangle if we are given the two other sides?


How do I know wether to use the sine or cosine rule?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences