solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees

cos(2y)= (cos(y))^2 - (sin(y))^2 identitynow consider identity (cos(y))^2+(sin(y))^2=1by rearranging this to (cos(y))^2 - 1 = - (sin(y))^2 we can now substitute it into our first identity to obtaincos(2y)= 2(cos(y))^2 - 1 We can now substitute cos(2y) in our equation to be solved.3(2(cos(y))^2 - 1) -5cos(y)+2=0simplifying this, we get:6(cos(y))^2 -3 -5cos(y) +2=06(cos(y))^2 -5cos(y) -1=0now let cos(y)=x, and solve this equation as a quadratic through factorisation6x2 -5x-1=06x2 -6x +x-1=06x(x-1)+ (x-1)=0(6x+1)(x-1)=0so x=-(1/6) or x=1so cos(y)=-(1/6) or cos(y)=1so y=pi/2or arccos(-1/6)=y

LS
Answered by Leah S. Maths tutor

3570 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C shows parametric equations x = 4tant and y = 5((3)^1/2)(sin2t) , Point P is located at (4(3)^1/2, 15/2) Find dy/dx at P.


What is exactly differentiation?


There is a Ferris wheel where the passengers are placed 10m away from the centre. At what speed must they be moving in order for them to feel completely weightless at the top of the wheel.


Differentiate y = arcsin(x) with respect to x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning