solve 3 cos (2y )- 5 cos( y)+ 2 =0 where 0<y<360 degrees

cos(2y)= (cos(y))^2 - (sin(y))^2 identitynow consider identity (cos(y))^2+(sin(y))^2=1by rearranging this to (cos(y))^2 - 1 = - (sin(y))^2 we can now substitute it into our first identity to obtaincos(2y)= 2(cos(y))^2 - 1 We can now substitute cos(2y) in our equation to be solved.3(2(cos(y))^2 - 1) -5cos(y)+2=0simplifying this, we get:6(cos(y))^2 -3 -5cos(y) +2=06(cos(y))^2 -5cos(y) -1=0now let cos(y)=x, and solve this equation as a quadratic through factorisation6x2 -5x-1=06x2 -6x +x-1=06x(x-1)+ (x-1)=0(6x+1)(x-1)=0so x=-(1/6) or x=1so cos(y)=-(1/6) or cos(y)=1so y=pi/2or arccos(-1/6)=y

LS
Answered by Leah S. Maths tutor

3782 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation for the tangent to the curve y^3 + x^3 + 3x^2 + 2y + 8 = 0 at the point (2,1)


The volume of liquid in a container is given by v=(3h^2+4)^(3/2)-8, find dV/dh when h = 0.6


On the same diagram, sketch the graphs of: y = |5x -2| and y = |2x| and hence solve the equation |5x - 2| = |2x|


Solve: 2 sin(2x) = (1-sin(x))cos(x) for 0<x<2*Pi and give any values of x, if any, where the equation is not valid


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning