Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28

This question is about turning points of a curve, these occur when the gradient of a line is zero. In its current form, the equation of the curve tells us nothing about the gradient of the curve; it must be differentiated, recalling the power rule for differentiation:dy/dx = (3)x^(3-1) - (2)3x^(2-1) - (1)24x^(1-1) - (0)28dy/dx = 3x^2 - 6x -24Remembering that turning points occur when dy/dx = 0, we must show that there are two solutions to 3x^2 - 6x -24 = 0 to answer the question. We can do this by using the quadratic discriminant, b^2 - 4ac for quadratic expressions of the form ax^2 + bx + c = 0.First, simplify the expression by dividing by 3 (this is allowed as we are not dividing by zero or something that could be zero) to x^2 - 2x - 8 = 0 and compare it to the general form of the quadratic. This tells us that a = 1, b = -2 and c = -8. Now substitute the values into the discriminant:(-2)^2 - 4(1)(-8) = 4 - (-32) = 36 > 0As the value of the discriminant is positive, the quadratic has two distinct real roots and the curve y = f(x) has exactly two turning points.

JA
Answered by Joshua A. Maths tutor

5387 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the parametric equations x=4t+3 and y+ 4t +8 +5/(2t). Find the value of dy/dx at the point on curve C where t=2.


(Follow on from previous question) A curve has equation y= x^2+3x+2. Use your previous results to i) find the vertex of the curve ii) find the equation of the line of symmetry of the curve


How do you find the stationary points of the curve with equation y=4x^3-12x+1


Particle A mass 0.4kg and B 0.3kg. They move in opposite direction and collide. Before collision, A had speed 6m/s and B had 2m/s. After collision B had 3m/s and moved in opposite direction. Find speed of A after collision with direction and Impulse on B.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning