How do you show some quadratic polynomials are always greater than 0?

Usually, there are two ways to solve this kind of problems. You could re-arrange the polynomial, make it become a square plus a constant, then the polynomial is greater or equal to the constant since a square of anything is greater or equal to 0.The second way is to use the formula. I would also encourage students to derive the formula themselves.

LW
Answered by Luke W. Maths tutor

6049 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of [ 2x^4 - (4/sqrt(x) ) + 3 ], giving each term in its simplest form


find the coordinate of the maximum value of the function f(x) = 9 – (x – 2)^2


Find ∫(x^3+x^2+6)dx.


(a) By using a suitable trigonometrical identity, solve the equation tan(2x-π/6)^2 =11-sec(2x-π/6)giving all values of x in radians to two decimal places in the interval 0<=x <=π .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning