How do you show some quadratic polynomials are always greater than 0?

Usually, there are two ways to solve this kind of problems. You could re-arrange the polynomial, make it become a square plus a constant, then the polynomial is greater or equal to the constant since a square of anything is greater or equal to 0.The second way is to use the formula. I would also encourage students to derive the formula themselves.

LW
Answered by Luke W. Maths tutor

5479 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The numbers a, b, c and d satisfy the following equations: a + b + 3c + 4d = k; 5a = 3b = 2c = d. What is the smallest value for k for which a, b, c and d are all positive integers


Integrate 1/((1-x^2)^(1/2)) by substitution


Find the curve whose gradient is given by dy/dx=xy and which passes through the point (0,3)


What does dy/dx represent?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences