Solve for x when |x-1|<|2x+3|

A graph is always helpful when dealing with this kind of problems. The first thing to do when sketching is to find the intersection with the axis. Ignore the modulus function for the moment. Then flip what's under x axis to include the modulus function. For |x-1| to be less than |2x+3|, its graph needs to be under the other function. We can see from the graph which section that is.The next step is to work out the intersection of two functions. If a section of the function is flipped, it means the sign has been changed, i.e. x-1 becomes 1-x. The first intersection can be found by solving 1-x=-2x-3, since they are both flipped. The second one can be found by solving 1-x=2x+3. They give x=-4 and x=-2/3. From the graph, it can be seem that x needs to have a range of x<-4 or x>-2/3.

QZ
Answered by Qinyu Z. Maths tutor

3756 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: (1) y – 2x – 4 = 0 , (2) 4x^2 + y^2 + 20x = 0


dy/dx of 2x (3x - 1)^5


Two forces P and Q act on a particle. The force P has magnitude 7 N and acts due north. The resultant of P and Q is a force of magnitude 10 N acting in a direction with bearing 120°. Find the magnitude of Q and the bearing of Q.


Find all the solutions of 2 cos 2x = 1 – 2 sinx in the interval 0 ≤ x ≤ 360°.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences