Solve for x when |x-1|<|2x+3|

A graph is always helpful when dealing with this kind of problems. The first thing to do when sketching is to find the intersection with the axis. Ignore the modulus function for the moment. Then flip what's under x axis to include the modulus function. For |x-1| to be less than |2x+3|, its graph needs to be under the other function. We can see from the graph which section that is.The next step is to work out the intersection of two functions. If a section of the function is flipped, it means the sign has been changed, i.e. x-1 becomes 1-x. The first intersection can be found by solving 1-x=-2x-3, since they are both flipped. The second one can be found by solving 1-x=2x+3. They give x=-4 and x=-2/3. From the graph, it can be seem that x needs to have a range of x<-4 or x>-2/3.

QZ
Answered by Qinyu Z. Maths tutor

4085 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate(dx) xy+4y-13


A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


Find the equation of the tangent line to the curve y = 2x^2 - 4x + 3 at the point (3,9)


Differentiate 3x^2+1/x and find the x coordinate of the stationary point of the curve of y=3x^2+1/x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning