Integrating sin^5(x)cos(x) (in slow logical steps)

Step 1: Make a substitution for u=Sin(x) differentiate that function to show du/dx =Cos(x)Step 2: Rearrange for dx to show dx=1/Cos(x) du and replace the dx in your original integral to show (integral symbol) Sin^5(x)duStep 4: Substitute in your Sin(x)=u to get u^5Step 5: Integrate u^5 to get (u^6)/6 + CStep 6: Substitute your u=Sin(x) back in to get (Sin^6(x))/6 + C

CE
Answered by Curtis E. Maths tutor

3396 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)


A curve passes through the point (4, 8) and satisfies the differential equation dy/dx = 1/ (2x + rootx) , Use a step-by-step method with a step length of 0.3 to estimate the value of y at x = 4.6 . Give your answer to four decimal places.


Express 2 ln(3) + ln(11) as a single natural logarithm


Find the gradient of the line Y = X^3 + X + 6 when X = 4


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning