Integrating sin^5(x)cos(x) (in slow logical steps)

Step 1: Make a substitution for u=Sin(x) differentiate that function to show du/dx =Cos(x)Step 2: Rearrange for dx to show dx=1/Cos(x) du and replace the dx in your original integral to show (integral symbol) Sin^5(x)duStep 4: Substitute in your Sin(x)=u to get u^5Step 5: Integrate u^5 to get (u^6)/6 + CStep 6: Substitute your u=Sin(x) back in to get (Sin^6(x))/6 + C

CE
Answered by Curtis E. Maths tutor

2862 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A small stone is projected verically upwards from a point O with a speed of 19.6ms^-1. Modeeling the stone as a particle moving freely under gravity find the time for which the stone is more than 14.6m above O


Separate (9x^2 + 8x + 10)/(x^2 + 1)(x + 2) into partial fractions.


Find all values of x in the interval 0 ≤ x ≤ 2pi for 2sin(x)tan(x)=3


Find the general solution of the equation tan(2x + pi/2) = SQRT(3), giving your answer for x in terms of π in a simplified form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences