Integrating sin^5(x)cos(x) (in slow logical steps)

Step 1: Make a substitution for u=Sin(x) differentiate that function to show du/dx =Cos(x)Step 2: Rearrange for dx to show dx=1/Cos(x) du and replace the dx in your original integral to show (integral symbol) Sin^5(x)duStep 4: Substitute in your Sin(x)=u to get u^5Step 5: Integrate u^5 to get (u^6)/6 + CStep 6: Substitute your u=Sin(x) back in to get (Sin^6(x))/6 + C

CE
Answered by Curtis E. Maths tutor

3097 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I understand eigenvalues and eigenvectors?


how can differentiate using the product and chain rule? e.g y=(4x+1)^3(sin2x), find dy/dx.


How do I find the roots of a quadratic equation?


Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning