Differentiate y = x sin(x)

The question is asking to differentiate which means find dy/dx. If we think about the differentiation rules we know about, we see that we should use the product rule as y is a product (multiplication) of two basic functions, x and sin(x). If y = uv then by the product rule, dy/dx = u'(x).v(x) + u(x).v'(x).In our particular question, u(x) = x and v(x) = sin(x). We know that the derivative of sin(x) is cos(x). So:dy/dx = 1.sin(x) + x.cos(x) = sin(x) + x.cos(x).

NT
Answered by Nathan T. Maths tutor

6488 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the difference between permutations and combinations?


use the substitution u=2+ln(x) to show that int(e,1(ln(x)/x(2+ln(x)^2))dx)=p+ln(q) , where p and q are rational numbers.


Find the minimum and maximum points of the graph y = x^3 - 4x^2 + 4x +3 in the range 0<=x <= 5.


Find the value of dy/dx at the point where x = 2 on the curve with equation y = x^ 2 √(5x – 1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning