Differentiate y = x sin(x)

The question is asking to differentiate which means find dy/dx. If we think about the differentiation rules we know about, we see that we should use the product rule as y is a product (multiplication) of two basic functions, x and sin(x). If y = uv then by the product rule, dy/dx = u'(x).v(x) + u(x).v'(x).In our particular question, u(x) = x and v(x) = sin(x). We know that the derivative of sin(x) is cos(x). So:dy/dx = 1.sin(x) + x.cos(x) = sin(x) + x.cos(x).

NT
Answered by Nathan T. Maths tutor

6324 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation x^2 + 2xy + 3y^2 = 4. Find dy/dx.


Three forces of magnitude 50N, PN, QN all act in a horizontal plane in equilibrium. The diagram shows the forces. DIAGRAM: QN = EAST, 50 = SOUTH, PN = 120 DEGREES ANTICLOCKWISE FROM QN a) Find P. b) Find Q.


Differentiate this equation: xy^2 = sin(3x) + y/x


How would you differentiate and integrate 2x^3?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning