Differentiate y = x sin(x)

The question is asking to differentiate which means find dy/dx. If we think about the differentiation rules we know about, we see that we should use the product rule as y is a product (multiplication) of two basic functions, x and sin(x). If y = uv then by the product rule, dy/dx = u'(x).v(x) + u(x).v'(x).In our particular question, u(x) = x and v(x) = sin(x). We know that the derivative of sin(x) is cos(x). So:dy/dx = 1.sin(x) + x.cos(x) = sin(x) + x.cos(x).

NT
Answered by Nathan T. Maths tutor

6934 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Derive the following with respect to x1: y=(x1*x2)/(x1+x2).


Use the substitution u = 6 - x^2 to find the value of the integral of (x^3)/(sqrt(6-x^2)) between the limits of x = 1 and x = 2 (AQA core 3 maths


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


Differentiate 8x^3+4x^2+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning