Describe the set of transformations that will transformthe curve y=x^ to the curve y=x^2 + 4x - 1

First complete the square on the curve in the answer to obtain y=(x+2)2 - 5 Now if you were to call your original equation y=f(x) you could see that the new equation is simply y=f(x+2) - 5This is now just a case of remembering the rules of transformationsThe bit inside the brackets provides a translation through the vector (-2 0) and the bit outside the brackets provides a translation through the vector (0 -5) Putting these two vectors together gives a translation through the vector (-2 -5) which is a translation 2 units in the negative x direction and 2 units in the negative y direction

SD
Answered by Shavon D. Maths tutor

3322 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has the equation: y=3x^2*(x+2)^6 Find dy/dx


integrate (4cos^4 x -4cos^2x+1)^1/2


Differentiate cos(2x^3)/3x


Find the equation of the normal to the curve y=2x^3 at the point on the curve where x=2. Write in the form of ax+by=c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning