The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.

Firstly, we need to recognise that the question stated that the quadratic equation has equal roots. This tells us that the discriminant of the equation (b^2 - 4ac) will be an important part of the solution. If we model the equation given in the form ax^2 + bx + c, we would know that in this case, a = 1, b = 3p and c = p. If a quadratic equation has equal roots, we know that b^2 – 4ac = 0. Substituting the values for a, b, and c in, we get another quadratic equation in terms of p: 9p^2 - 4p = 0. We can factorise out p to get p(9p - 4) = 0, which gives us the solutions p = 0 and p = 4/9. Going back to the question, we’re told that p is a non-zero constant, which means that we can eliminate p = 0 as a solution. This leaves us with p = 4/9.

EB
Answered by Emmanuel B. Maths tutor

23669 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show the sum from n=0 to 200 of x^n given that x is not 1, is (1-x^201)/(1-x) hence find the sum of 1+2(1/2)+3(1/2)^2+...+200(1/2)^199


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


How do you solve simultaneous questions?


How do I find the equation of the tangent to y = e^(x^2) at the point x = 4?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning