The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.

Firstly, we need to recognise that the question stated that the quadratic equation has equal roots. This tells us that the discriminant of the equation (b^2 - 4ac) will be an important part of the solution. If we model the equation given in the form ax^2 + bx + c, we would know that in this case, a = 1, b = 3p and c = p. If a quadratic equation has equal roots, we know that b^2 – 4ac = 0. Substituting the values for a, b, and c in, we get another quadratic equation in terms of p: 9p^2 - 4p = 0. We can factorise out p to get p(9p - 4) = 0, which gives us the solutions p = 0 and p = 4/9. Going back to the question, we’re told that p is a non-zero constant, which means that we can eliminate p = 0 as a solution. This leaves us with p = 4/9.

EB
Answered by Emmanuel B. Maths tutor

24099 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given a second order Differential Equation, how does one derive the Characteristic equation where one can evaluate and find the constants


Edexcel C3 June 2015 Q1: tan(x)=p, where p is a constant. Using standard trigonometric identities, find the following in terms of p. a) tan(2x). b) cos(x). c) cot(x-45).


How do I find the stationary points of a curve?


How do I work out what integration method I should use to solve an integral?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning