The equation x^2 + 3px + p = 0, where p is a non-zero constant, has equal roots. Find the value of p.

Firstly, we need to recognise that the question stated that the quadratic equation has equal roots. This tells us that the discriminant of the equation (b^2 - 4ac) will be an important part of the solution. If we model the equation given in the form ax^2 + bx + c, we would know that in this case, a = 1, b = 3p and c = p. If a quadratic equation has equal roots, we know that b^2 – 4ac = 0. Substituting the values for a, b, and c in, we get another quadratic equation in terms of p: 9p^2 - 4p = 0. We can factorise out p to get p(9p - 4) = 0, which gives us the solutions p = 0 and p = 4/9. Going back to the question, we’re told that p is a non-zero constant, which means that we can eliminate p = 0 as a solution. This leaves us with p = 4/9.

EB
Answered by Emmanuel B. Maths tutor

22736 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A line has equation y = 2x + c and a curve has equation y = 8 − 2x − x^2, if c=11 find area between the curves


Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


Take the 2nd derivative of 2e^(2x) with respect to x.


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning