Find the equation of the tangent line to the parabola y=x^2+3x+2 at point P(1, 6).

In order to find the equation of the tangent line, first we have to find its slope. To do this, we take the first derivative of the function. In this particular case, we just need to apply the power rule (if y=x^n, dy/dx=nx^(n-1)) to each of the terms: y=x^2+3x+2 => dy/dx=2x+3 Having done that, in order to find the slope at the particular point we're looking at, we have to substitute for the value of x we are given, in this case x=1. If the slope of the tangent line at point P is m, m=2x1+3=5 Finally, in order to find the equation of the tangent line, we can use the straight line equation, y-y1=m(x-x1), where (x1, y1) are the coordinates of the point we're given. By substituting, we find: y-6=5(x-1) => y-6=5x-5 => y=5x+1 So, the equation of the tangent line is y=5x+1.

BA
Answered by Boris A. Maths tutor

5340 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the binomial distribution and when should I use it?


The curve C has equation (4x^2-y^3+3^2x)=0. The point P (0,1) lies on C: what is the value of dy/dx at P?


Differentiate with respect to x, y = (x^3)*ln(2x)


Differentiate the equation y = (2x+5)^2 using the chain rule to determine the x coordinate of a stationary point on the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning