Solve the simultaneous equations 2x+3y=17 and 10x-y=5.

In order to solve the simultaneous equations, you should first get rid of one of the unknowns. In this case, one of the ways to do this is to multiply both sides of the first equation by 5 (2x+3y=17 => 10x+15y=85) and then subtract the second equation from the first one in order to get rid of the x: (10x+15y)-(10x-y)=(85)-(5) => 16y=80 => y=5. Having found y, we can substitute for y=5 in the second equation to find x: 10x-5=5 => 10x=10 => x=1. Hence, we get x=1, y=5.

BA
Answered by Boris A. Maths tutor

3431 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Share £650 in the ratio 8:5


There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.


Solving quadratic equations using the factorisation method.


How would I make S the subject of the formula in the equation V^2 = U^2 + 2AS


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences