Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x

Differentiate U with respect to x to find dx in terms of du and substitute into the integral so that it is in terms of du, then using e^3x = (e^x)^3 and u = 1+e^x subsitute u in for x and simplify the integral to u-2+1/u du and integrate with respect to u. Then subsituting x back in for u.The final answer being (1+e^x)^2/2 - 2(1+e^x) + ln(1+e^x)

CF
Answered by Cory F. Maths tutor

4856 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I tell if a curve has a maximum or a minimum?


If f(x) = (3x-2) / x-5 x>6, find a.) ff(8) b.) the range of f(x) c.) f^-1(x) and state its range.


How do we use the Chain-rule when differentiating?


Use integration by parts to integrate the following function: x.sin(7x) dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning