Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x

Differentiate U with respect to x to find dx in terms of du and substitute into the integral so that it is in terms of du, then using e^3x = (e^x)^3 and u = 1+e^x subsitute u in for x and simplify the integral to u-2+1/u du and integrate with respect to u. Then subsituting x back in for u.The final answer being (1+e^x)^2/2 - 2(1+e^x) + ln(1+e^x)

CF
Answered by Cory F. Maths tutor

5153 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is Taylor Series


Given that y = x^2 +2x + 3, find dy/dx.


Show that the cubic function f(x) = x^3 - 7x - 6 has a root x = -1 and hence factorise it fully.


A circle with centre C(2, 3) passes through the point A(-4,-5). (a) Find the equation of the circle in the form (x-a)^2 + (y-b)^2=k


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning