Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x

Differentiate U with respect to x to find dx in terms of du and substitute into the integral so that it is in terms of du, then using e^3x = (e^x)^3 and u = 1+e^x subsitute u in for x and simplify the integral to u-2+1/u du and integrate with respect to u. Then subsituting x back in for u.The final answer being (1+e^x)^2/2 - 2(1+e^x) + ln(1+e^x)

CF
Answered by Cory F. Maths tutor

4949 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has equation y=(2x-3)^5. Find the equation of the normal of this curve at point P with y coordinate -32.


Show that the determinant of the 3x3 matrix (2 1 1 / 2 1 7 / 6 3 5) is equal to zero.


The line l1 has equation y = −2x + 3. The line l2 is perpendicular to l1 and passes through the point (5, 6). (a) Find an equation for l2 in the form ax + by + c = 0, where a, b and c are integers.


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning