Find the integral of e^3x/(1+e^x) using the substitution of u=1+e^x

Differentiate U with respect to x to find dx in terms of du and substitute into the integral so that it is in terms of du, then using e^3x = (e^x)^3 and u = 1+e^x subsitute u in for x and simplify the integral to u-2+1/u du and integrate with respect to u. Then subsituting x back in for u.The final answer being (1+e^x)^2/2 - 2(1+e^x) + ln(1+e^x)

CF
Answered by Cory F. Maths tutor

4994 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y = (1 + 3x^2)^(1/3) , use the chain rule to find dy/dx in terms of x.


differentiate with respect to 'x' : ln(x^2 + 3x + 5)


How do you integrate ln(x)?


Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning