How can I demonstrate that (sin(T)+cos(T))(1-sin(T)cos(T))=(sin(T))^3+(cos(T))^3

You first develop the expression on the left side of the equation:(sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)-sin^2(T)cos(T)+cos(T)-sin(T)cos^2(T)=sin(T)(1-cos^2(T))+cos(T)(1-sin^2(T))Now, you will need to use the formula cos^2(T)+sin^2(T)=1Hence, 1-cos^2(T)=sin^2(T) and 1-sin^2(T)=cos^2(T)You now have the following equation: (sin(T)+cos(T))(1-sin(T)cos(T))=sin(T)(sin^2(T))+cos(T)(cos^2(T))QED

TC
Answered by Tabea C. Maths tutor

3343 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2sin^3(x)+3.


Find the equation to the tangent to the curve x=cos(2y+pi) at (0, pi/4)


Find the volume of revolution when the curve defined by y=xe^(2x) is rotated 2*pi radians about the x-axis between x=0 and x=1


Differentiation basics: What is it?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning