Can you prove to me why cos^2(X) + sin^2(X) = 1?

The answer to this lies in the geometry of a circle. At GCSE you were taught that a circle has a radius (which I will call R) which is the distance from the centre to a point on the circle. We put the centre of this circle on the x-y plane at (0,0). Drawing a straight line (which I will call L) from the centre to a point (a,b) on the circle in the upper right quadrant, we have a distance which is also the radius R. Using Pythagoras Theorem we can say that a2+b2 = R2 ..(1)We now look at the angle between the x-axis and the line L. We shall call this angle X for convenience. Using SOH CAH TOA trigonometry from GCSE we have that cos(X) = a/R - which we rearrange to get: a = Rcos(X)sin(X) = b/R - which we rearrange to get b = Rsin(X)If we substitute these two equations into (1) then we get: R2cos2(X) + R2sin2(X) = R2We then divide both sides of this equation to get cos2(X) + sin2(X) = 1!

JM
Answered by Jack M. Maths tutor

3533 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find the roots of a quadratic equation?


A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


(https://qualifications.pearson.com/content/dam/pdf/A-Level/Mathematics/2013/Exam-materials/6666_01_que_20160624.pdf) Question 6.(i)


Integrate (x+2)/((x+5)(x-7)) using partial fractions between the limits 5 and -2, giving your answer to 3sf


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning