A curve has equation y = (12x^1/2)-x^3/2

y = 12x1/2 - x3/2
First take the 1/2 power and multiply by the integer in front of the x (so 12 x 1/2 = 6), then minus 1 from the power (1/2 - 1 = -1/2) and replace the power above the x with -1/2. So that makes the first part of the equation = 6x-1/2
Next we do the same to the second part of the equation, we take the 3/2 power and multiply by the integer in front of the x (so -1 x 3/2 = -3/2), then minus 1 from the power (3/2 - 1 = 1/2). So that makes the second part of the equation = (-3/2) x1/2. So putting it together the final answer is dy/dx = 6x-1/2 -(3/2) x1/2

AB
Answered by Amay B. Maths tutor

5300 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2x/[(x+1)(2x-4)


The curve C has the equation y=3x/(9+x^2 ) (a) Find the turning points of the curve C (b) Using the fact that (d^2 y)/(dx^2 )=(6x(x^2-27))/(x^2+9)^3 or otherwise, classify the nature of each turning point of C


Differentiate with respect to x: y=2^x


How do you resolve forces on an object on an angled plane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences