Show that cosh(x+y) = cosh(x)cosh(y) + sinh(x)sinh(y)

RHS: cosh(x)cosh(y) + sinh(x)sinh(y) = 1/4(e^x + e^-x)(e^y + e^-y) + 1/4(e^x - e^-x)(e^y - e^-y) = 1/4(e^x.e^y + e^x.e^-y + e^-x.e^y + e^-x.e^-y + e^x.e^y - e^x.e^-y - e^-x.e^y + e^-x.e^-y) = 1/4(2e^x.e^y + 2e^-x.e^-y) = 1/2(e^x.e^y + e^-x.e^-y) = 1/2(e^(x+y) + e^-(x+y)) = cosh(x+y) [QED]

AH
Answered by Alex H. Maths tutor

6362 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = x^3 +x^2 - 4x +5 with respects to x.


Proof by Induction - "What's the point if we already know the answer?"


(5 + 2(2^0.5))(7 - 3(2^0.5))


How can you factorise expressions with power 3 or higher?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning