Find the tangent to the curve y = x^2 + 3x + 2 that passes through the point (-1,0), sketch the curve and the tangent.

Differentiate to find dy/dx = 3x + 2;at point (-1,0) dy/dx = -1substitute in to y = mx + c, noting m = -1 and the line passes through (-1,0) yields c = -1y = -x - 1, simple to sketch this line.curve sketching, note we already have a zero crossing from the point in the question, find the other zero crossing as (-2,0), sketch a typical x^2 curve passing through the zero crossings and the y intercept at (0,2).

PW
Answered by Peter W. Maths tutor

3230 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down two reasons for using statistical models


How would you find the minimum turning point of the function y = x^3 + 2x^2 - 4x + 10


The line l1 has equation 2x + 3y = 26 The line l2 passes through the origin O and is perpendicular to l1 (a) Find an equation for the line l2


Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning