Why does the equation x^2+y^2=r^2 form a circle in the Cartesian plane?

The general line equation in the Cartesian plane is given by ax+by=c, where a, b, and c are given constants. This means that all (x_0, y_0) points that are situated on the line satisfy the equation ax_0+by_0=c. In general, an equation of a line, a circle, an ellipse or other curves is an equation such that all points on the curve satisfy the equation of the curve and other points on the plane do not.
The equation x^2+y^2=r^2 has the equivalent form squareroot(x^2+y^2)=r. According to the distance formula in the Cartesian coordinate system, this means that all points on the curve are of equal distance from the origin. This is exactly the definition of the circle, namely that all points on the circumference are of equal distance from the center of the circle.

BS
Answered by Bálint S. Maths tutor

13185 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate 2x^5 + 7x^3 - (3/x^2)


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


Write down the coordinates of the centre and the radius of the circle with equation x^2+y^2-4x-8y+11=0


G(x)=x^3 + 1, h(x)=3^x; solve G(h(a))=244


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning