Show that tan(x) + cot(x) = 2cosec(2x)

For this we have to use trignometric identities, e.g Tan(x)= sin(x)/cos(x), sin2(x) + cos2(x) = 1, 1/sin(x) = cosec(x)
tan(x) + cot(x) = sin(x)/cos(x) + cos(x)/sin(x) = [sin2(x) + cos2(x)]/sin(x)cos(x) = 1/sin(x)cos(x) ------------------------> Sin(2x) = 2sin(x)cos(x) so sin(x)cos(x) = Sin(2x)/2 = 2/sin(2x) = 2cosec(2x)

MB
Answered by Moin B. Maths tutor

10945 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


What are the different steps involved in Proof by Induction?


y=e^2x-11e^x+24 Find the stationary point, nature of the stationary point, the x-intercepts and the y-intercept (calculator allowed)


Find the stationary points of y= 5x^2 + 2x + 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning