Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]

We know that: (1) the radius of the circle to the point [4,3] is perpendicular to the tangent line, (2) if two lines are perpendicular, their gradients are negative reciprocals of each other, and (3) the formula for a straight line is y = mx + c. The radius gradient is equal to 3/4, so the tangent gradient is -4/3. Substituting m, y and x at [4,3] into the straight line formula gives c as 25/3. Therefore, the equation of this tangent line is y = (-4/3)x + (25/3).

JS
Answered by Jamie S. Maths tutor

6777 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify 4(x+5) + 3(x-7)


5^a = 1/25, 5^b = 25sqrt(5), 5^c = 1/sqrt(5). What is the value of a + b + c?


The length of a rectangle is five times the width. The area of the rectangle is 1620cm2. Work out the width of the rectangle.


x^2+7x+6=0. Factorise the quadratic equation


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences