Work out the equation of the tangent to a circle of centre [0,0] at the point [4,3]

We know that: (1) the radius of the circle to the point [4,3] is perpendicular to the tangent line, (2) if two lines are perpendicular, their gradients are negative reciprocals of each other, and (3) the formula for a straight line is y = mx + c. The radius gradient is equal to 3/4, so the tangent gradient is -4/3. Substituting m, y and x at [4,3] into the straight line formula gives c as 25/3. Therefore, the equation of this tangent line is y = (-4/3)x + (25/3).

JS
Answered by Jamie S. Maths tutor

6832 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the probability of picking a red ball twice from a bag of 6 blue balls and 3 red balls, without replacement.


How do you translate the graph y = x^2, five unit squares negatively horizontally and 3 unit squares positively vertically?


Where does the quadratic formula come from?


Work out the value of (√12 + √3) squared. Assume square roots are positive.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences