Solve the equation x^2 + 10x + 24 = 0

x2 + 10x + 24 = 0
First we must factorise the equation, which means put it into brackets. To do this we must find two numbers which multiply to equal 24 and add together to make 10. The only two numbers that can do this are 6 and 4. We then write out the equation like this:
(x+6)(x+4)=0
There are two possible solutions to this equation. In order for (x+6)(x+4) to equal 0, either (x+6) must equal 0, or (x+4) must equal 0. Therefore the solutions are:
x = -6 or x = -4

AA
Answered by Archie A. Maths tutor

12446 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

n is an integer greater than 1. Prove algebraically that n^2 – 2 – (n – 2)^2 is always an even number.


A bag contains only 8 beads. The beads are identical in all respects except colour. 3 of the beads are black and the other 5 beads are white. A bead is taken at random from the bag and not replaced. A second bead is then taken at random from the bag. What


There are only 7 blue pens, 4 green pens and 6 red pens in a box. One pen is taken at random from the box. Write down the probability that this pen is blue.


solve: [(3x-2)/4] - [(2x+5)/3] = [(1-x)/6]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning