Integrate 3x^4-4x^2+3/x

Firstly, integrate each term individually, starting off with the 3x^4. In order to integrate the index on the x term needs to be raised by 1, and the coefficient of the x should be divided by this new value. In this case; 4+1=5, which is the new index. 3/5 is the new coefficient. Therefore this term equals to 3/5x^5. Doing the same with the next 2 terms and integrating 3/x to 3ln(x) using the integral rule, you will end with the result of 3/5x^5-4/3x^3+3ln(x)+C. Ensure that the "+C" is always included as it contributes towards the marks.

MR
Answered by Muhammad R. Maths tutor

3829 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation (t – 1)x^2 + 4x + (t – 5) = 0, where t is a constant has no real roots. Show that t satisfies t2–6t+1>0


Find the derivative of y=e^(2x)*(x^2-4x-2).


Use the substitution u=3+(x+4)^1/2 to find the integral of 1/(3+(x+4)^1/2) dx between 0 and 5.


Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning