Integrate 3x^4-4x^2+3/x

Firstly, integrate each term individually, starting off with the 3x^4. In order to integrate the index on the x term needs to be raised by 1, and the coefficient of the x should be divided by this new value. In this case; 4+1=5, which is the new index. 3/5 is the new coefficient. Therefore this term equals to 3/5x^5. Doing the same with the next 2 terms and integrating 3/x to 3ln(x) using the integral rule, you will end with the result of 3/5x^5-4/3x^3+3ln(x)+C. Ensure that the "+C" is always included as it contributes towards the marks.

MR
Answered by Muhammad R. Maths tutor

3366 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of log|x| by integration by parts


Simplify the following algebraic fraction; (3x^2 - x - 2) / ((1/2)x + (1/3)).


The curve C has the equation: 2(x^2)y + 2x + 4y – cos (πy) = 17 use implicit differentiation to find dy/dx in terms of x and y


Prove by induction that, for n ∈ Z⁺ , [3 , -2 ; 2 , -1]ⁿ = [2n+1 , -2n ; 2n , 1-2n]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences