x – 7x + 10 = 0

Equation of this type should be seen as x2-SX+P=0, where S is the sum of the solutions, while P is their product. We have too find 2 numbers whose sum is S and product is P. In this example, we have S=7 and P=10, for this 2 conditions we have x1=2 and x2=5, as 2+5=7 and 2x5=10. Next, we will divide 7 in 2 and 5, as it follows: (x2-5x)-(2x+10)=0, in order to be more clear you use brackets. Now, we choose the common factor and extract it => x(x-5)-2(x-5)=0 (!pay attention to the signs). It is easily to see another common factor (x-5), therefore we extract once again the common factor => (x-5)(x-2)=0. This is the final result.

AE
Answered by Anca Elena M. Maths tutor

3372 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise x^2 −x−12


f(x) = (x+1)^2 and g(x) = 2(x-1); Show that gf(x) =2x(x+2)


Solve 7(x+2)=5x+21


The y-intercept of A is 7. A also passes through point (7, 2). (a) Find an equation of A in the form y = mx + c. (b) B is perpendicular to A and also has a y-intercept of 7. Write down the equation for B in the form y = mx + c.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning