If 5x + 3y = 27 and 6x - 2y = 10, find x and y

5x + 3y = 27 (1)6x - 2y = 10 (2)Rearrange (1) to make x the subject.Subtracting - 3y from both sides gives5x = 27 - 3yDivide both sides by 5 givesx = (27 - 3y)/5Substitute (1) into (2) gives6(27 - 3y)/5 - 2y = 10Multiple both sides by 5 gives6(27 - 3y) - 10y = 50Expand brackets162 - 18y - 10y = 50162 - 28y = 5028y = 112y = 112/28y = 4Now substitute y = 4 into (1)5x + 3(4) = 275x = 27 - 12x = 15/5x = 3

TA
Answered by Thomas A. Maths tutor

3631 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Talil is going to make some concrete mix. He needs to mix cement, sand and gravel (1: 3:5) by weight. Talil wants to make 180 kg of concrete mix. He has 15 kg of cement, 85 kg of sand, 100 kg of gravel. Does he have enough to make the concrete?


Solve 2x+5=9


How do I solve this linear equation? Angles A and B are in a quadrilateral are in ratio 2:3, angle C is 30 degrees more than angle B and angle D is 90 degrees.


Given that y = 5, solve the following equation for x, 9x - 3y = 97 - 5x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning