If 5x + 3y = 27 and 6x - 2y = 10, find x and y

5x + 3y = 27 (1)6x - 2y = 10 (2)Rearrange (1) to make x the subject.Subtracting - 3y from both sides gives5x = 27 - 3yDivide both sides by 5 givesx = (27 - 3y)/5Substitute (1) into (2) gives6(27 - 3y)/5 - 2y = 10Multiple both sides by 5 gives6(27 - 3y) - 10y = 50Expand brackets162 - 18y - 10y = 50162 - 28y = 5028y = 112y = 112/28y = 4Now substitute y = 4 into (1)5x + 3(4) = 275x = 27 - 12x = 15/5x = 3

TA
Answered by Thomas A. Maths tutor

3592 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How would I solve x^2 + 7x + 10 = 0


How do I solve the following simultaneous equations? y = 2x -3 and 2x + 3y = 23


Solve (6x-2)/4 - (3x+3)/3 = (1-x)/3. (4 marks)


50 people ate a snack , some had apples some had biscuits the rest had banana. 21 people were male the rest female. 6 out of 8 people who had apples were female. 18 people had biscuits. 9 females had bananas. How many males had biscuits?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning