The equation 5x^2 + px + q = 0, where p and q are constants, has roots t and t+4. Show that p^2 = 20q + 400.

We know that if we have a polinomial of the form ax^2 + bx + c = 0, then:sum of the roots = -b/a and product of the roots = c/a Therefore: t + (t + 4) = -p/5 and t(t + 4) = q/5 Therefore: 2t + 4 = -p/5 so t + 2 = -p/10 and t^2 + 4t = q/5 so (t + 2)^2 = q/5 +4 Sub. the first relation into the second one: p^2/100 = q/5 + 4p^2 = 100(q/5 + 4) = 20q + 400 Therefore: p^2 = 20q + 400

AB
Answered by Alexandra B. Maths tutor

4499 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A sequence starts with the following terms... 2, 8, 14, 20... find the nth term


ABD is a triangle, C lies on BD. AD=BD=√2/2 and CD=√3/3. Find the EXACT area of ABC. (all measurements are in cm)


Rearrange the following equation to make 'm' the subject: 4 (m - 2) = t (5m + 3) [4 marks]


There are 7 white socks and 4 black socks. 2 are taken at random without replacement. What is the probablity that 2 socks of the same colour are taken?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning